Skip to article frontmatterSkip to article content

Signal Modelling

MP2RAGE

NeuroPoly Lab, Polytechnique Montreal, Quebec, Canada

Prior to considering the full signal equations, we will first introduce the equation for the MP2RAGE parameter (SMP2RAGE) that is calculated in addition to the T1 map. For complex data (magnitude and phase, or real and imaginary), the MP2RAGE signal (SMP2RAGE) is calculated from the images acquired at two TIs (SGRE,TI1 and SGRE,TI2) using the following expression Marques et al., 2010:

SMP2RAGE=real(SGRETI1SGRETI2SGRETI12+SGRETI22)S_{\text{MP2RAGE}}=\text{real}\left( \frac{S_{\text{GRE}_{\text{TI}_{1}}}^{\ast}S_{\text{GRE}_{\text{TI}_{2}}}^{\ast}}{\left| S_{\text{GRE}_{\text{TI}_{1}}} \right|^{2}+ \left| S_{\text{GRE}_{\text{TI}_{2}}} \right|^{2}} \right)

This value is bounded between [-0.5, 0.5], and helps reduce some B0 inhomogeneity effects using the phase data. For real data, or magnitude data with polarity restoration, this metric is instead calculated as:

SMP2RAGE=real(SGRETI1SGRETI2SGRETI12+SGRETI22)S_{\text{MP2RAGE}}=\text{real}\left( \frac{S_{\text{GRE}_{\text{TI}_{1}}}^{\ast}S_{\text{GRE}_{\text{TI}_{2}}}^{\ast}}{S_{\text{GRE}_{\text{TI}_{1}}}^{2}+ S_{\text{GRE}_{\text{TI}_{2}}}^{2}} \right)

Because MP2RAGE is a hybrid of pulse sequences used for inversion recovery and VFA, the resulting signal equations are more complex. Typically, a steady state is not achieved during the short train of GRE imaging blocks, so the signal at the center of k-space for each readout (which defines the contrast weighting) will depend on the number of phase-encoding steps. For simplicity, the equations presented here assume that the 3D phase-encoding dimension is fully sampled (no partial Fourier or parallel imaging acceleration). For this case (see appendix of Marques et al., 2010 for derivation details), the signal equations are:

SGRETI1=B1eTE/T2M0sin(θ1)×[(effmz,ssM0EA+(1EA))(cos(θ1)ER)n/21+(1ER)1(cos(θ1)ER)n/211cos(θ1)ER]\begin{split} S_{\text{GRE}_{\text{TI}_{1}}}=&B_{1}^{-}e^{-\text{TE}/T_{2}^{\ast }}M_{0}\text{sin}\left( \theta_{1} \right) \\ &\times \Bigg[ \left( \frac{-\text{eff}m_{z,ss}}{M_{0}}\text{EA}+\left( 1-\text{EA} \right) \right)\left( \text{cos}\left( \theta_{1} \right) \text{ER} \right)^{n/2-1}\\ &\quad\quad+\left( 1-\text{ER} \right) \frac{1-\left( \text{cos}\left( \theta_{1} \right)\text{ER} \right)^{n/2-1}}{1-\text{cos}\left( \theta_{1} \right)\text{ER}} \Bigg] \end{split}
SGRETI2=B1eTE/T2M0sin(θ2)×[mz,ssM0EA+(1EC)EC(cos(θ2)ER)n/2(1ER)(cos(θ2)ER)n/211cos(θ2)ER]\begin{split} S_{\text{GRE}_{\text{TI}_{2}}}=&B_{1}^{-}e^{-\text{TE}/T_{2}^{\ast }}M_{0}\text{sin}\left( \theta_{2} \right) \\ &\times \Bigg[\frac{ \frac{m_{z,ss}}{M_{0}}\text{EA}+\left( 1-\text{EC} \right)}{\text{EC}\left( \text{cos}\left( \theta_{2} \right)\text{ER} \right)^{n/2}}-\left( 1-\text{ER} \right)\frac{\left( \text{cos}\left( \theta_{2} \right)\text{ER} \right)^{-n/2}-1 }{1-\text{cos}\left( \theta_{2} \right)\text{ER} } \Bigg] \end{split}

where B1- is the receive field sensitivity, “eff” is the adiabatic inversion pulse efficiency, ER=exp(TR/T1)\text{ER} = \text{exp}(-\text{TR}/T_{1}), EA=exp(TA/T1)\text{EA} = \text{exp}(-\text{TA}/T_{1}) , EB=exp(TB/T1)\text{EB} = \text{exp}(-\text{TB}/T_{1}), EC=exp(TC/T1)\text{EC} = \text{exp}(-\text{TC}/T_{1}). The variables TA, TB, and TC are the three different delay times (TA: time between inversion pulse and beginning of the GRE1 block, TB: time between the end of GRE1 and beginning of GRE2, TC: time between the end of GRE2 and the end of the TR). If no k-space acceleration is used (e.g. no partial Fourier or parallel imaging acceleration), then these values are TA = TI1 - (n/2)TR, TB = TI2 - (TI1 + nTR), and TC = TRMP2RAGE - (TI1 + (n/2)TR), where n is the number of voxels acquired in the 3D phase encode direction varied within each GRE block. The value m{sub}`1z,ss is the steady-state longitudinal magnetization prior to the inversion pulse, and is given by:

mz,ssM0[β(cos(θ2)ER)n+(1ER)1(cos(θ2)ER)n1cos(θ2)ER]EC+(1EC)1+eff(cos(θ1)cos(θ2))neTRMP2RAGE/T1m_{z,ss}\frac{M_{0}\left[ \beta\left( \text{cos}\left( \theta_{2} \right)\text{ER} \right)^{n}+\left( 1-\text{ER} \right)\frac{1-\left( \text{cos}\left( \theta_{2} \right)\text{ER} \right)^{n}}{1-\text{cos}\left( \theta_{2} \right)\text{ER} } \right]\text{EC+}\left( 1- \text{EC}\right)}{1+\text{eff}\left( \text{cos}\left( \theta_{1} \right) \text{cos}\left( \theta_{2} \right) \right)^{n}e^{-TR_{\text{MP2RAGE}}/T_{1}}}
β=((1EA)(cos(θ1)ER)n+(1ER)1(cos(θ1)ER)n1cos(θ1)ER)EB+(1EB)\beta=\bigg( \left( 1-\text{EA} \right) \left( \text{cos}\left( \theta_{1}\right)\text{ER} \right)^{n}+\left( 1-\text{ER} \right)\frac{1-\left( \text{cos}\left( \theta_{1}\right)\text{ER} \right)^{n}}{1-\text{cos}\left( \theta_{1}\right)\text{ER} }\bigg)\text{EB}+\left( 1-\text{EB} \right)

From Equations 2.13, 2.14, 2.15, and 2.13, it is evident that the MP2RAGE parameter SMP2RAGE (Equations 2.11, 2.12) cancels out the effects of receive field sensitivity, T2*, and M0. The signal sensitivity related to the transmit field (B1+), hidden in Equations 2.13, 2.14, 2.15, and 2.16 within the flip angle values θ1\theta_{1} and θ2\theta_{2}, can also be reduced by careful pulse sequence protocol design Marques et al., 2010, but not entirely eliminated Marques & Gruetter, 2013.

References
  1. Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.-F., & Gruetter, R. (2010). MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field. Neuroimage, 49(2), 1271–1281.
  2. Marques, J. P., & Gruetter, R. (2013). New Developments and Applications of the MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R1 Mapping. PLoS One, 8(7), e69294.