# Plot Figure 1
# Module imports
import matplotlib.pyplot as plt
import plotly.graph_objs as go
import numpy as np
from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
from plotly.subplots import make_subplots
config={'showLink': False, 'displayModeBar': False}
init_notebook_mode(connected=True)
# PYTHON CODE
init_notebook_mode(connected=True)
## Setup for plots
fig = make_subplots(rows=2, cols=1, vertical_spacing = 0.2,
subplot_titles=(
'<b>Signal</b>',
'<b>Mean-Convolved</b>',))
# Setup signal
signal = np.zeros(100)
signal[10] = 1
signal[25:27] = 1
signal[50] = 1
signal[51] = -1
signal[50] = 1
signal[51] = -1
signal[70:90] = np.random.uniform(0.95,1.05,20)
# Compute convolution
convolved = np.zeros(101)
for ii in range(1,100):
if ii <3 or ii>98:
continue
else:
convolved[ii] = (signal[ii-1]+signal[ii]+signal[ii+1])/3
position = np.arange(1,101)
signal_line = [dict(
visible = False,
x = position,
y = signal,
name = "Signal",
mode = 'lines',
hoverinfo = "y",
showlegend=False) for ii in range(len(position))]
signal_line[4]['visible'] = True
mean_points = []
mean_points.append(
dict(
visible = False,
x = position[0:2],
y = np.array([0,0]),
name = "Signal",
hoverinfo = "y",
showlegend=False
))
for ii in range(len(position)-2):
mean_points.append(
dict(
visible = False,
x = position[ii:ii+3],
y = signal[ii:ii+3],
name = "Signal",
hoverinfo = "y",
showlegend=False))
mean_points.append(
dict(
visible = False,
x = position[-2:],
y = np.array([0,0]),
name = "Signal",
hoverinfo = "y",
showlegend=False
))
mean_points[4]['visible'] = True
convolved_line = [dict(
visible = False,
x = position,
y = convolved[0:ii+1],
name = "Mean-Convolved",
mode = 'lines',
hoverinfo = "y",
showlegend=False) for ii in range(len(position))]
convolved_line[4]['visible'] = True
cur_point = []
for ii in range(len(position)):
cur_point.append(
dict(
visible = False,
x = np.array(position[ii]),
y = np.array(convolved[ii]),
name = "Current point",
hoverinfo = "y",
showlegend=False))
cur_point[4]['visible'] = True
# Add traces
for ii in range(len(position)):
fig.add_trace(go.Scatter(signal_line[ii], line=dict(color="black", width=2)), row= 1, col=1)
for ii in range(len(position)):
fig.add_trace(go.Scatter(mean_points[ii], marker=dict(
symbol='circle',
color='red',
size= 8,)
), row= 1, col=1)
for ii in range(len(position)):
fig.add_trace(go.Scatter(convolved_line[ii], line=dict(color="blue", width=2)), row= 2, col=1)
for ii in range(len(position)):
fig.add_trace(go.Scatter(cur_point[ii], marker=dict(
symbol='circle',
color='red',
size= 8,)
), row= 2, col=1)
# Create and add slider
steps = []
for i in range(len(position)):
step = dict(
method="update",
args=[{"visible": [False] * len(fig.data), "showlegend": [False] * len(fig.data)},], # layout attribute
label = str(i+1)
)
step["args"][0]["visible"][i] = True # Toggle i'th trace to "visible"
step["args"][0]["visible"][i+1*len(position)] = True # Toggle i'th trace to "visible"
step["args"][0]["visible"][i+2*len(position)] = True # Toggle i'th trace to "visible"
step["args"][0]["visible"][i+3*len(position)] = True # Toggle i'th trace to "visible"
steps.append(step)
sliders = [dict(
active=4,
currentvalue={"prefix": "Position: "},
pad={"t": 50},
steps=steps
)]
layout = go.Layout(
width=750,
height=600,
margin=go.layout.Margin(
l=100,
r=80,
b=100,
t=130,
),
xaxis=dict(
showgrid=True,
gridcolor='rgb(169,169,169)',
linecolor='black',
linewidth=2,
range = [0,100]
),
yaxis=dict(
showgrid=True,
gridcolor='rgb(169,169,169)',
linecolor='black',
linewidth=2,
range = [-1.1,1.1]
),
xaxis2=dict(
showgrid=True,
gridcolor='rgb(169,169,169)',
linecolor='black',
linewidth=2,
range = [0,100]
),
yaxis2=dict(
showgrid=True,
gridcolor='rgb(169,169,169)',
linecolor='black',
linewidth=2,
range = [-1.1,1.1]
),
legend=dict(
x=0.25,
y=1.3,
traceorder='normal',
font=dict(
family='Times New Roman',
size=12,
color='#000'
),
bordercolor='#000000',
borderwidth=2
),
sliders=sliders
)
fig.update_layout(layout)
iplot(fig, filename = 'fig2.html', config = config)
Loading...