from repo2data.repo2data import Repo2Data
import os
import pickle
import matplotlib.pyplot as plt
import chart_studio.plotly as py
import plotly.graph_objs as go
import numpy as np
from plotly import __version__
from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot
from IPython.display import display, HTML
from plotly import tools
from contextlib import contextmanager
import sys, os
@contextmanager
def suppress_stdout():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
with suppress_stdout():
data_req_path = os.path.join("..","..","..", "binder", "data_requirement.json")
repo2data = Repo2Data(data_req_path)
DATA_ROOT = os.path.join(repo2data.install()[0],"t1-book-neurolibre")
filename = os.path.join(DATA_ROOT,"02",'figure_4.pkl')
with open(filename, 'rb') as f:
params, Nex_range, signal_ideal_spoil, signal_optimal_crush_and_rf_spoil, signal_no_gradient_and_rf_spoil = pickle.load(f)
config={'showLink': False, 'displayModeBar': False}
init_notebook_mode(connected=True)
data1 = [dict(
visible = False,
mode = 'lines',
x = params["EXC_FA"],
y = abs(np.squeeze(np.asarray(signal_ideal_spoil[ii]))),
name = 'Ideal Spoiling',
text = 'Ideal Spoiling',
hoverinfo = 'x+y+text') for ii in range(len(Nex_range))]
data1[10]['visible'] = True
data2 = [dict(
visible = False,
mode = 'lines',
x = params["EXC_FA"],
y = abs(np.squeeze(np.asarray(signal_optimal_crush_and_rf_spoil[ii]))),
name = 'Gradient & RF Spoiling',
text = 'Gradient & RF Spoiling',
hoverinfo = 'x+y+text') for ii in range(len(Nex_range))]
data2[10]['visible'] = True
data3 = [dict(
visible = False,
mode = 'lines',
x = params["EXC_FA"],
y = abs(np.squeeze(np.asarray(signal_no_gradient_and_rf_spoil[ii]))),
name = 'No Spoiling',
text = 'No Spoiling',
hoverinfo = 'x+y+text') for ii in range(len(Nex_range))]
data3[10]['visible'] = True
data = data1 + data2+ data3
steps = []
for i in range(len(Nex_range)):
step = dict(
method = 'restyle',
args = ['visible', [False] * len(data1)],
label = str(Nex_range[i])
)
step['args'][1][i] = True # Toggle i'th trace to "visible"
steps.append(step)
sliders = [dict(
x = 0,
y = -0.02,
active = 10,
currentvalue = {"prefix": "n<sup>th</sup> TR: <b>"},
pad = {"t": 50, "b": 10},
steps = steps
)]
layout = go.Layout(
width=580,
height=450,
margin=go.layout.Margin(
l=80,
r=40,
b=60,
t=10,
),
annotations=[
dict(
x=0.5004254919715793,
y=-0.18,
showarrow=False,
text='Excitation Flip Angle (°)',
font=dict(
family='Times New Roman',
size=22
),
xref='paper',
yref='paper'
),
dict(
x=-0.15,
y=0.5,
showarrow=False,
text='Signal',
font=dict(
family='Times New Roman',
size=22
),
textangle=-90,
xref='paper',
yref='paper'
),
],
xaxis=dict(
autorange=False,
range=[0, params['EXC_FA'][-1]],
showgrid=False,
linecolor='black',
linewidth=2
),
yaxis=dict(
autorange=True,
showgrid=False,
linecolor='black',
linewidth=2
),
legend=dict(
x=0.5,
y=0.9,
traceorder='normal',
font=dict(
family='Times New Roman',
size=12,
color='#000'
),
bordercolor='#000000',
borderwidth=2
),
sliders=sliders,
plot_bgcolor='white'
)
fig = dict(data=data, layout=layout)
iplot(fig, filename = 'vfa_fig_4.html', config = config)
Loading...